Novel Graphene Material for High Energy Storage Supercapacitors CMSE April 28th 2022

Regional Centre of Advanced Technologies and Materials

Presented by: T. Zednicek EPCI European Passive Components Institute, Lanskroun, Czech Republic www.passive-components.eu

A.Bakandritsos, V. Sedajova, P. Jakubec, M. Otyepka RCPTM Regional Centre for Advanced Technologies and Materials Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, Czech Republic

1

Capacitor Technologies

Supercapacitor Storage Mechanisms

Positive electrode

EDLC – Helmholtz Electrostatic Storage

Pseudocapacitance Electrochemical Storage

Pseudo-

capacitors

а

Charge transfer,

redox reactions

storage

sctrode

Supercapacitors Characteristics

Parameter	Aluminum electrolytic capacitors	Supercapacitors			l ithium is a
		Double-layer capacitors for memory backup	Super-capacitors for power applications	Pseudo and Hybrid capacitors (Li-Ion capacitors)	Lithium-ion batteries
Temperature range (°C)	-40 to 125	−20 to +70	-20 to +70	-20 to +70	−20 to +60
Cell voltage (V)	4 to 550	1.2 to 3.3	2.2 to 3.3	2.2 to 3.8	2.5 to 4.2
Charge/discharge cycles	unlimited	10 ⁵ to 10 ⁶	10 ⁵ to 10 ⁶	2 • 10 ⁴ to 10 ⁵	500 to 10 ⁴
Capacitance range (F)	≤ 1	0.1 to 470	100 to 12000	300 to 3300	_
Energy density (Wh/kg)	0.01 to 0.3	1.5 to 3.9	4 to 9	10 to 15	100 to 265
Power density (kW/kg)	> 100	2 to 10	3 to 10	3 to 14	0.3 to 1.5
Self discharge time at room temperature	short (days)	middle (weeks)	middle (weeks)	long (month)	long (month)
Efficiency (%)	99	95	95	90	90
Life time at room temperature (years)	> 20	5 to 10	5 to 10	5 to 10	3 to 5
Capacitor		Capacitor Like Battery Like			Battery

Parameters of supercapacitors compared with electrolytic capacitors and lithium-ion batteries

source:Wikipedia

SC Energy & Power Density Benchmark

High Energy SC Key Design Consideration:

Electrode System Design Electrolyte Matching

Energy Storage Mechanisms

Electrostatic

Pseudocapacitance

Source: Leibniz Institute of New Materials

• High Surface Area

- High Ability to Acumulate Electrostatic or Electrochemic Charge
- High Density (nano-pores) in Thin Layer
- High Electrical (nano-channels) Conductivity for Power Density

Source: IDTechEx "Supercapacitor Materials and Formats 2020-2040" report; published under IDTechEx permission

OUR RESEARCH

Regional Centre of Advanced Technologies and Materials

Olomouc, Czech Republic

Agricultural Research (CR Haná)

Novel Graphene Material for High Energy Storage Supercapacitors

Doubling of Supercapacitors' Energy and Power Density

Electroactive Electrode Design

© RCPTM & EPCI 2022

Graphene

Graphene vs Carbon Benefits:

- cheaper, enormous surface area (2630m²/g) and higher power density
- 10x more conductive
- theoretical max capacitance of 2D graphene is 550 F/g (~ 200F/g achieved in practice)
- easy team up with various other nanomaterials, prominently carbon nanotubes (CNTs), to create low cost, lightweight and high-performance supercapacitors.

- 2D one-atom thick
- 200x stronger than steel
- 3x better electron mobility than silicon
- Lightweight
- Flexible
- Thin
- Large surface area
- High electrical conductivity
- High thermal conductivity
- Low Cost
- Transparent
- Bio-degradable

Electrodes: Charge Boosting Options

Structural Design Strategies to Boost Electrode Material Charge Storage Potential

- increase the surface area microporous
 3D structure
- reduce restacking
- increase the packing density and conductivity
- accomplish defect control
- functionalization and hybridization of materials

Capacitance of graphene-based electrode materials can be significantly boosted by:

- assembling them with redox-active reversible materials, e.g., transition metal oxides, such as MnO2, iron oxides or 2D Mxenes
- doping with heteroatoms such as N-doping that increase the electronic conductivity and improves the solidelectrolyte interface, allowing solvated ions to better infiltrate the pores of the electrode – increasing both electrostatic and pseudocapacitance mechanisms
- mounting of longer functional groups perpendicular to the graphene surface may enhance the capacitance further.

Structural Electrode Design – Combining the Boost Options

- Covalent functionalization of graphene

 allow fine control over the hierarchy of
 SC electrode materials and bring the 3D
 micro/nano-porous structure
- N-Doping
- Fluorographene proposed as the precursor for functionalization – as low cost, ideal high-density matching material with graphene monolayer

Fluorographene Structure

Supercapacitors based on Fluorographene Chemistry

Research Areas

- Synthesis, characterization and applications of low-dimensional carbon-based materials.
- Functionalization and chemical modification of graphene and its derivatives aim to maximize pseudocapacitance.
- Iron tetraaminophthalocyanine G-FePc selected as the functionalization element based on previous experience

2nd Approach

2D N-Doped Graphene SC Structure

Synthesized Nitrogen Doped 2D Graphene Layer (extra N-doped & tunable)

2D N-Doped Graphene SC Manufacturing

- Doping graphene with heteroatoms can significantly alter its electronic structure
- Nitrogen doping can imprint **active centers** on graphene supporting charge nano-traps and introduce N-type semiconductivity to graphene

The Process Can Be Tuned To Modify 2D Structure

Graphite Fluoride

Tunable Synthesis of GN3 Nitrogen Doped Graphene from Fluorographene

carbon atoms are grey

Material Testing & Characterization

GN3 2D N-Doped Graphene SC- Achievements

Lower gravimetric ED Compare to Covalently Functioned Graphene

SC Cell Voltage: 3.7V

High Cell Voltage Compare to Conventional SCs

Up to 100 F/g at 55 Wh/kg and 2 kW/kg corresponds to 320 F/cm³ at <u>150 Wh/l</u> and 5 kW/l

At higher power density (required for SCs) **up to** 300 F/cm³ at 130 Wh/l and <u>50 kW/l</u>

> Record Power Density Significantly Higher Compare to Conventional SCs

Record Volumetric Energy Density. BEST IN CLASS ever reported on SC Comparable to Batteries !!!

© RCPTM & EPCI 2022

Performance Evaluation

Ref.: Nitrogen doped graphene with diamond-like bonds achieves unprecedented energy density at high power in a symmetric sustainable supercapacitor Energy Environ. Sci. 2022, 15 (2), 740-748

Research Achievements

Summary Record, Highest Energy and Power Density Ever Supercapacitor Structures Have Been Demonstrated

- ED of GN3 2D N-doped synthetized graphene up to <u>150Wh/l, 60 Wh/kg</u> at PD 2 kW/kg with 2–50 kW/kg possible
- Novel Process: Tunable synthesis of N-doped 2D graphene using fluorographene
- Safe, environmental friendly construction, no heavy metals or hazardous substances
- High Capacitance retention and "no" charging/discharging cycle wearout (10K cycles tested)

! THIS IS A MAJOR BREAKTHROUGH IN SC CLOSING THE GAP with ED to Batteries and PD to Capacitors !

the fluorographene based processes to prepare high energy graphene electrode material has been filed for patent

matching top Ni-MH / std Li-ion Battery

Next Step

1. Mass Production Ready High Energy Graphene-Based Supercapacitors

- optimizing the properties of GN3 material
- pilot pre-production of the graphene-based electrode supercapacitors in pouch and wound types (ERC project)
- aim is to increase the energy density of supercapacitors beyond 50 Wh L⁻¹
- Industry partners: Itelcond (Milano, Italy); Bar-Ilan university (Ramat Gan, Israel)

2. Use of Fluorographene Process to Enhance LiS Batteries

Li-S batteries advantage:

- 3-5x higher energy density ~ 2,500 Wh/kg
- Nickel and cobalt free solution (conflict/resource issues free)
- No heavy metals / 3x lighter compared to Li-Ion
- No / suppressed thermal runaway failure
- Cheaper: ~200 tons of sulfur equals to ~1 ton of cobalt
- Lower carbon footprint, RoHS friendly
- 3x Faster charging
- No extra pressure needed (unlike solid states)
- Vigorous 100% charge/discharge depth rate

Issues:

shuttling-effect of the formed lithium polysulfides, as well as their low conductivity limit charge/discharge cycle life to low hundreds of cycles

Our First Experiments: Fluorographene LiS batteries cycle life capable up to 250-500hours

Thank You !

Contact:

Tomas Zednicek Ph.D. tom@passive-components.eu

www.passive-components.eu

Passive Components Educational & Information Blog

Acknowledgement

Ministry of Education, Youth and Sports of the Czech Republic •

LO1305, CZ.1.05/2.1.00/19.0377

- Research Infrastructure NanoEnviCz: project No. LM2015073
- European Regional Development Fund Operational Programme Research, Development and Education CZ.02.1.01/0.0/0.0/16_019/0000754
- European Union's Horizon 2020 ERC project No. 683024
- European Union's ERC Grant ERC PoC 899245

The student authors acknowledge the support from the Internal Student Grant Agency of the Palacký University in Olomouc, Czech Republic, IGA_PrF_2019_031 and IGA_PrF_2020_022