Solderless assembly of high pin count packages on PCB

Space Passive components Days 2018
12th October 2018

H. Jochem, N. Venet, P. Retho, L. Murphy, J.B Sauveplane
Table of contents

1. Introduction
2. Specification
3. Developed solution
4. Test results
5. Conclusion
Introduction

Context:
- Semiconductors used on the new generation of digital equipment present fine device features (e.g., 65 nm), high I/O count (up to 2000's I/O) and fast clock rates (3-10GHz). For today's solutions, the packages are based on ceramic package with column attach (CCGA).
- Solderless approach using interposer for assembly LGA on PCB could be an alternative, easy to mount and dismount as well as repairing

Objective:
- Developed solderless assembly using interposer for mounting LGA 1752 (42.5X42.5 mm²) on PCB for high speed application

- Define the requirements for the solderless solution and Trade-off
- Design the interposer system
- Manufacture and mount the system
- Demonstrate the performance and the reliability of the system

Project:
- ESA – ARTES 5 (supported by CNES)
- Prime: Thales Alenia Space
- Partner: Smiths Interconnect
- Duration: 18 month
Solderless assembly requirements

Electrical requirements:

- **Data rate**: 6.25 Gbps

Noise Budget:

- **Differential Return loss**: $S11 < -25 \text{ dB} + \text{ freq [GHz] from 1 MHz to 12 GHz}$
- **Differential insertion loss**: $S21 < -0.5 \text{ dB} @ F= 5\text{GHz}$
- **Crosstalk**: $S31&S41 < -30 \text{ dB} \text{ from 1 MHz to 12 GHz}$

Technological requirements

<table>
<thead>
<tr>
<th>Designation</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum number of LGA pads</td>
<td>800</td>
</tr>
<tr>
<td>Number of package I/Os for die</td>
<td>1000</td>
</tr>
<tr>
<td>Pitch</td>
<td>1 mm</td>
</tr>
<tr>
<td>Housing Material</td>
<td>Space qualified material (outgassing = as RML <1% and CVCM < 0,1%)</td>
</tr>
<tr>
<td>Contact Interfaces</td>
<td>Gold</td>
</tr>
<tr>
<td>PCB compatibility</td>
<td>High frequency material</td>
</tr>
<tr>
<td>Mass</td>
<td><CCGA mass</td>
</tr>
<tr>
<td>Reliability</td>
<td>Vibration + 1500 thermal -55/ 100°C</td>
</tr>
<tr>
<td>Country</td>
<td>Develop and manufacture in a Country without any exportation license</td>
</tr>
</tbody>
</table>
Solution developed and manufactured by Smiths Interconnect

A trade-off for the interposer solution was based on criteria:

- Country,
- High Speed LGA capability,
- Thickness,
- Pitch (1 mm),
- Reliability and maturity,
- Electrical and mechanical properties,
- Outgassing properties.

⇒ Selected technology: Smiths Interconnect interposer enclosing 1752 contacts with a pitch of 1 mm

- 2 types of contacts both with gold finish and based on spring technology: Hymstac contact and IDI contact
- 2 types of Housing materials for interposer: PEEK or PAI
LGA assembly using interposer solution

- Type of contact?
- Type of insulating resin for interposer?
- Design of holding system?
Solution developed and manufactured by Smiths Interconnect

- Electrical simulation

 - High frequency simulation (Return Loss, TDR) were done with the two types of contacts and two insulating materials for interposer: PEEK and PAI

 - PEEK and IDI contact give the best results.

Return Loss

- Return loss and TDR are within the specification

![Graph showing Return Loss and TDR](image)

- TDR = 44 ohm

![Graph showing TDR](image)
Solution developed and manufactured by Smiths Interconnect

Mechanical simulation

The mechanical behavior of the system and parts were independently modeled. The displacement and the stress implied by the compression of the 1752 contacts inside the interposer was evaluated. The Von Mises stress and the deformation of the frame and stiffener were evaluated with the ANSYS tool and with the two types of contacts and with different shapes of frame and stiffener.

The maximum Von Mises stress is less than 75 MPa <= maximum elastic resistance (260 MPa).

IDI contact and star shape frame offer the best solution. However, this assembly is 25% heavier than the target.

The maximum displacement is less than 0.066 mm = maximum acceptable value.
Solution developed and manufactured by Smith Interconnects

From electrical and mechanical simulation: The Smiths Interconnect interposer with 1752 IDI contacts and star shape stiffener has been selected
- Housing material: PEEK insulating resin
- Mass: 17g for interposer
- Mass of assembly: 117g > CCGA mass

9 DUTs were mounted on PCB for testing

- Easy & fast to mount
- Easy to dismount & Repair
Test Campaign

<table>
<thead>
<tr>
<th>PCB number</th>
<th>Devices number</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB N°1</td>
<td>DUT 2</td>
<td>Reference</td>
</tr>
<tr>
<td>PCB N° 2</td>
<td>DUT 1 - DUT 3 - DUT 4 - DUT 9</td>
<td>Vibration + Thermal-cycling</td>
</tr>
<tr>
<td>PCB N°4</td>
<td>DUT 6 - DUT 7 - DUT 8</td>
<td>Life Test</td>
</tr>
</tbody>
</table>

- **Functional testing at 25°C (9DUT):**
 - Vibrations according to ECSS-Q-ST-70-38C
 - 500 thermal cycles + electrical monitoring daisy chain
 - 1000 thermal cycles + electrical monitoring daisy chain

- **Life testing:**
 - Functional testing
 - Deassembly / Assembly
 - DC continuity
 - TDR on HF1

- **Reference:**
 - PCB N°1
 - PCB N° 2
 - PCB N°4
Test Results

- Functional Test @T0
- Thermal-mechanical test results
- Life test results
TDR on HF1 / HF2 / PHF

HF1: 50 Ω impedance lines including die
HF2: 100 Ω impedance differential pair lines including die
PHF: 50 Ω impedance line across the package
TDR Zoom on Interposer

- Measurements were compared to electrical model provided by Smiths Interconnect

HF1

PHF

HF2

Good correlation performance
EYE DIAGRAM on HF2

6.25Gbps:
EYE DIAGRAM on HF2

<table>
<thead>
<tr>
<th></th>
<th>Jitter (TIE)</th>
<th>Eye Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>7,3 ps</td>
<td>420 mV</td>
</tr>
<tr>
<td>Channel</td>
<td>15,5 ps</td>
<td>288 mV</td>
</tr>
<tr>
<td>Acceptable limit</td>
<td>80 ps</td>
<td>125 mV</td>
</tr>
</tbody>
</table>

- Reference: BERtester looped with coaxial cable
- Test channel: PCB, interposer, ASIC and test probes
- Acceptable limit: real flight model application
- The results indicate good performance of the system with Jitter and Eye Height far from acceptable limit and a contribution of the reference as significant as the channel
- Eye opening budget shows that the test channel is a small contributor and margins are good

- Good performance for the channel
- Interposer have a very low impact on Eye opening budget.
TEST RESULTS

- **Functional Test @T0**
- **Thermal-mechanical test results**
- **Life test results**

Thermal-cycling under continuous electrical monitoring: 500/1500 thermal cycles from -55°C to 100°C with a ramp of 10°C and step of 15 min.
DC Continuity

<table>
<thead>
<tr>
<th>N° DUT</th>
<th>T0</th>
<th>After vibration</th>
<th>After 500 thermal-cycling</th>
<th>After 1500 thermal-cycling</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUT1</td>
<td>47,1</td>
<td>47,9</td>
<td>44,1</td>
<td>X</td>
</tr>
<tr>
<td>DC Variation DUT 1 (%)</td>
<td>+ 1,7 %</td>
<td>- 6,4 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUT 3</td>
<td>46,9</td>
<td>47,5</td>
<td>43,6</td>
<td>42,0</td>
</tr>
<tr>
<td>DC Variation DUT 3 (%)</td>
<td>+ 1,3%</td>
<td>- 7%</td>
<td>- 10,4%</td>
<td></td>
</tr>
<tr>
<td>DUT 4</td>
<td>46</td>
<td>47,1</td>
<td>43,2</td>
<td>41,6</td>
</tr>
<tr>
<td>DC Variation DUT 4 (%)</td>
<td>+ 2,5%</td>
<td>- 6%</td>
<td>- 9,5%</td>
<td></td>
</tr>
<tr>
<td>DUT 9</td>
<td>48,3</td>
<td>48,9</td>
<td>43,5</td>
<td>42,2</td>
</tr>
<tr>
<td>DC Variation DUT 9 (%)</td>
<td>- 1,3%</td>
<td>- 9,9%</td>
<td>- 12,6%</td>
<td></td>
</tr>
</tbody>
</table>

- Very low increase of DC resistivity after vibration (far away from + 10%)
- Decrease of resistivity after thermal-cycles
TDR on HF1

- No evolution of the curves after vibration, 500 an 1500 thermal-cycles

- Same results for the 3 DUT
Visual inspection after vibration & 500 Thermal-cycles & 1500 Thermal-cycles

- Any defect observed on the footprint and on LGA pads
- Any scratch or mark observed on IDI contact as well as on the raw material of interposer
- All contacts are out of the housing material
TEST RESULTS

- Functional Test @T0
- Thermal-mechanical test results
- Life test results
DC Continuity

Test condition: 1000h@125°C

<table>
<thead>
<tr>
<th>N° DUT</th>
<th>T0</th>
<th>After Life testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUT 6</td>
<td>44.9</td>
<td>46.4</td>
</tr>
<tr>
<td>Variation</td>
<td>REF</td>
<td>3.3%</td>
</tr>
<tr>
<td>DUT 7</td>
<td>46.4</td>
<td>47.5</td>
</tr>
<tr>
<td>Variation</td>
<td>REF</td>
<td>2.4%</td>
</tr>
<tr>
<td>DUT 8</td>
<td>47.2</td>
<td>48.7</td>
</tr>
<tr>
<td>Variation</td>
<td>REF</td>
<td>3.1%</td>
</tr>
</tbody>
</table>

- Very slight increase of DC resistivity (far away from + 10%)
No evolution of the measures after 1000h @ 125°C (same results for the DUTs)
Conclusion

- **Trade-off & design of the solution**
 - The trade-off on solderless assembly on HDI PCB and results from mechanical and electrical simulations have led to the development of a Smiths Interconnect Interposer solution with IDI contacts, PEEK insulating material for interposer and a holding system with a stiffener with star shape.

- **Mounting:**
 - The 9 LGA with the interposer connector were successfully mounted on HDI PCBs. Assembly/disassembly was easy and fast to carry out.

- **Assessment:**
 - The assembly was evaluated in term of electrical performance under harsh environment (vibration, thermal-cycling, life testing).
 - The system has highlighted electrical performance within the specification and high reliability under space environment.

This electrical interposer and its mounting system is a reliable solderless solution to assemble high pin count packages (1752 I/Os) with high frequency interfaces.
THANK YOU FOR YOUR ATTENTION

Any question?