ESA SPCD 2018, THE NETHERLANDS
Vishay Precision Group (VPG) Foil Resistors

Mr. Jacob Musel, Quality Director,
VPG Foil Resistors

Mr. Hero Faierstain, Senior Manager Application Eng.,
Vishay Foil Resistors
VPG and VPG Foil Resistors

• VPG is a global resistive sensor technology solutions provider in mission-critical applications.

• VPG spun-off from Vishay Intertechnology in 2010.

• Approximately 2,250 VPG employees worldwide now consolidated into 8 main manufacturing facilities.

• VPG Foil Resistors division includes 3 manufacturing facilities and above 600 employees.

• Physicist Dr. Felix Zandman introduced in 1962 the Bulk Metal® Foil (BMF) technology which is still unparalleled for applications that require precision, stability and reliability.

VPG Foil Resistors

Dr. Felix Zandman
1962 - 2011
Vishay Foil Resistors - IL

- Principal plant – Vishay Foil Resistors product line located in Holon, Israel
- **ISO 9001:2015/AS9100D**
- Total employees: 452 (31-Jul-2018)
- 3 resistor models with Mil. QPL qualification
- 8 resistor families in compliance with EEE-INST-002
- 14 DLA drawings

- Above 20% of revenues from Avionics, Military and Space (AMS) market sector
Portfolio and Roadmap VPG Foil Resistors Division

- Extremely low TCR: 0.2 ppm/°C typical
- TCR tracking available to 0.1 ppm/°C
- Excellent load-life stability/ratio stability: ±0.002% max ΔR per MIL standard; ultra long term stability: <1 ppm/year
- Very low resistance values from 0.0005 Ω
- Any 6-digit value in the resistance range available at no additional cost with any tolerance (to 0.001%)
- High power up to 2500 W (Per special customer request)
- Rapid thermal stabilization: <1 s
- Thermal EMF: 0.05 μV/°C
- Electrostatic discharge (ESD): to at least 25 kV
- Non-inductive: < 0.08 μH
- Certification to NIST standards
- Special design to meet high temperature application requirements up to +240°C ambient temperature
Ultra-High Precision Z Foil Current Sense Resistors for Space Applications

Industry-exclusive ultra-high precision current sense resistors

- Based on Bulk Metal® Foil resistive element.
- 4 terminal Kelvin configuration for precision current sensing.
- Highly precise voltage directly proportional to measured current levels.
- Screening and testing in accordance with NASA Goddard EEE-INST-002 ((Tables 2A and 3A, Film/Foil, Level 1).

Resistor model CSM3637F (V/N 303337)

Features

- Resistance range: 20 mΩ to 200 mΩ (any 6 digit value)
- Resistance tolerance: to ±0.1%
- Temperature coefficient of resistance (TCR):
 - 10 ppm/°C (−55°C to +125°C, +25°C ref.)
 - For tighter TCR please contact us.
- Power rating: to 4 W at 70°C
- Load-life stability: to ±0.02% (70°C, 2000 hours at rated power)
- Short-time overload: 0.02%
- Electrostatic discharge (ESD): at least to 25kV
- Solderable terminations

Resistor model VCS1625Z (V/N 303119Z)

Features

- Resistance range: 0.3Ω to 10 Ω (any 6 digit value)
- Resistance tolerance: to ±0.5%
- Temperature coefficient of resistance (TCR):
 - 3 ppm/°C max. (−55°C to +125°C, +25°C ref.)
- Power rating: to 0.5 W at 70°C
- Load-life stability: to ±0.05% (70°C, 2000 hours at rated power)
- Short-time overload: 0.02%
- Electrostatic discharge (ESD): at least to 25kV
- Solderable terminations
Surface-Mount Current Sense Performance Specifications

Bulk Metal Foil CSM3637F Performance Specifications

<table>
<thead>
<tr>
<th>Test/Condition</th>
<th>Resistance Value</th>
<th>Typical ΔR % Limits$^{(1)}$</th>
<th>Max ΔR % Limits$^{(1)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load-life stability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 h, +70°C at rated power</td>
<td>\geq100 mΩ</td>
<td>0.05%</td>
<td>0.5%</td>
</tr>
<tr>
<td></td>
<td>20 mΩ to <100 mΩ</td>
<td>0.05%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Short-time overload</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 x rated power, 5 s</td>
<td>20 mΩ to 200 mΩ</td>
<td>0.02%</td>
<td>0.05%</td>
</tr>
<tr>
<td>High temperature exposure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 h, 170°C</td>
<td>20 mΩ to 200 mΩ</td>
<td>0.2%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Moisture resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIL-STD-202, method 106, 0 power, 7a and 7b not required</td>
<td>20 mΩ to 200 mΩ</td>
<td>0.005%</td>
<td>0.02%</td>
</tr>
<tr>
<td>Shock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 g, 6 ms, 5 pulses</td>
<td>20 mΩ to 200 mΩ</td>
<td>0.02%</td>
<td>0.05%</td>
</tr>
<tr>
<td>Vibration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Hz to 2000 Hz, 20G 2 axes, 6 h per axis</td>
<td>20 mΩ to 200 mΩ</td>
<td>0.02%</td>
<td>0.05%</td>
</tr>
<tr>
<td>Resistance to soldering heat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 s to 12 s at +260°C</td>
<td>20 mΩ to 200 mΩ</td>
<td>0.03%</td>
<td>0.05%</td>
</tr>
</tbody>
</table>

Note

$^{(1)}$ Measurement error allowed for ΔR limits: 0.0005 Ω

EEE-INST-002 (Table 2A Film/Foil, Level 1) 100% Tests/Inspections$^{(1)}$

<table>
<thead>
<tr>
<th>Test/Condition</th>
<th>In tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC Record</td>
<td>In tolerance</td>
</tr>
<tr>
<td>Thermal Shock</td>
<td>$25\times (\text{–65°C to +150°C})$</td>
</tr>
<tr>
<td>RC Record</td>
<td>$\Delta R = 0.1%$</td>
</tr>
<tr>
<td>High Temperature Exposure</td>
<td>$+170°C$, 100 h, no power</td>
</tr>
<tr>
<td>RC Record</td>
<td>In tolerance $\Delta R = 0.1%$</td>
</tr>
<tr>
<td>Final Inspection</td>
<td>$5%$ PDA on ΔR, $10%$ PDA on out of tolerance</td>
</tr>
<tr>
<td>Visual Inspection</td>
<td>Magnification $30\times$ to $60\times$</td>
</tr>
<tr>
<td>Mechanical Inspection</td>
<td>Dimensions, workmanship, 3 units sample size</td>
</tr>
</tbody>
</table>

Note

$^{(1)}$ Vishay Foil Resistors will perform a pre-cap visual inspection 100% in the production flow prior to overcoating